
OASIS eXtensible Access
Control Markup Language

(XACML)
XML Community of Practice, 21 June 2006

Anne Anderson
Senior Staff Engineer
Sun Microsystems Laboratories

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

2

Outline

• Motivation
• XACML Overview
• How Does It Work?
• What's Special About XACML?
• Comparison to Other Languages
• Further Information

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

3

Motivation for XACML

• Data more accessible today
• Regulatory requirements
• Protection at the enforcement level
• Protection of XML documents
• Standard language

> Interoperability
> Common policies, tools, analysis
> Auditability

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

4

Outline

• Motivation
• XACML Overview
• How Does It Work?
• What's Special About XACML?
• Comparison to Other Languages
• Further Information

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

5

XACML Overview

• XML-based
• Schemas for

> Policies
> Access decision requests
> Access decisions

• Rich set of functions and datatypes for expressing
policies

• Specification: how to evaluate policies against
access decision requests

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

6

XACML Overview: standardization

• OASIS Standard
• XACML 1.0 approved Feb. 2003
• XACML 2.0 approved Feb. 2005, including Profiles:

> Privacy
> Role Based Access Control
> OASIS Security Assertions Markup Language (SAML)
> ...

• XACML 3.0 in progress
> Policy-controlled policy administration

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

7

XACML Overview: adoption

• Used by more than 35 companies and architectures
> Sun, BEA, IBM, Globus, Layer 7, Entrust, ...
> ASTM Privilege Management Architecture (VHA)
> Net-centric Enterprise Services Architecture (DISA)
> Defense Readiness Reporting System (DoD)
> Enterprise Dynamic Access Control (U.S. Navy)

• Publicly available implementations and tools,
including unencumbered open source

• Over 135 published papers and articles so far

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

8

Outline

• Motivation
• XACML Overview
• How Does It Work?
• What's Special About XACML?
• Comparison to Other Languages
• Further Information

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

9

How Does It Work: Data Flow

Policy
Enforcement
Point (PEP)

Policy
Decision

Point (PDP)

Context
Handler

Requester

Resource

access request

decision request decision &
obligations

resource
content

database

registry

Attribute
Authority additional

attributes

Policy
Administration

Point (PAP)

policies

request notification

attribute queries

attributes

XACML Data
Flow Diagram

decision & obligations

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

10

How Does It Work: Language Model

PolicySet

Policy

Rule

ConditionEffect

Rule
Combining
Algorithm

Policy
Combining
Algorithm

Target

Subject

Resource

Action

Environment

Obligation

*

1

1 1

1

1

1 1

1

*

1

*

1

1

1

1

1 1 1 1

*

*

*

*

1

1

1 1

1
1

*
1

*

XACML Policy
Language

Model

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

11

How Does It Work: Example Policy

“In order to access a
patient record, you must
be at least 21 years old.”

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

12

How Does It Work: Example Policy
<Policy PolicyId="policy:1" RuleCombiningAlgorithm="deny-overrides”>
 <Target/>
 <Rule RuleId="rule:1" Effect="Deny">
 <Target> <Resources> <Resource>
 <ResourceMatch MatchId="anyURI-equal">
 <ResourceAttributeDesignator
 AttributeId="resource:TargetNamespace" DataType="anyURI"/>
 <AttributeValue
 DataType="anyURI">schemas:PatientRecord</AttributeValue>
 </ResourceMatch>
 </Resource> </Resources> </Target>
 <Condition>
 <Apply FunctionId="integer-less-than">
 <Apply FunctionId="integer-one-and-only">
 <SubjectAttributeDesignator AttributeId="age" DataType="integer"/>
 </Apply>
 <AttributeValue DataType="integer">21</AttributeValue>
 </Apply>
 </Condition>
 </Rule>
</Policy>

Rule Effect

Rule Target

Rule Condition

Empty Policy Target

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

13

Outline

• Motivation
• XACML Overview
• How Does It Work?
• What's Special About XACML?
• Comparison to Other Languages
• Further Information

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

14

What Is Special About XACML?

• Domain-independent
• Protection of XML documents
• Distributed policies
• Optimized indexing of policies
• Rich set of standard functions and datatypes
• Profiles (see next slides)
• Policy administration and delegation coming

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

15

XACML Profiles: Privacy

• Standard XACML 2.0 +
• “Purpose” Attributes

> Purpose for collecting information
> Purpose for accessing information

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

16

XACML Profiles:
Role Based Access Control

Accessor

Policy
Enforcement

Point

Sensitive
Document

Policy
Decision

Point

Healthcare
Supervisor

Policy

Physician

 Policy

Registered
Nurse

Policy

Nursing
Aide

Policy

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

17

XACML Profiles:
Role Based Access Control

• ANSI/INCITS 359:2004:Information Technology –
Role Based Access Control (RBAC)

• Developed with ANSI Standard developers

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

18

XACML Profiles: OASIS Security
Assertion Markup Language (SAML)

PEP

XACML
PDP

AAAA
Attribute
Authority

PAPA
Policy
Admin
Point

Attribute
Repository

Policy
Repository

Request:AttributeQuery

Response:AttributeStatement

Response:
AttributeStatement

Assertion:
XACMLPolicyStatement

Response:
XACMLPolicyStatement

Request:
XACMLPolicyQuery

Request:XADQ

Response:XADS Request:
AttributeQuery

Assertion:
AttributeStatement

Assertion:
XACMLPolicyStatement

Assertion:
AttributeStatement

Assertion:
AttributeStatement

XADQ =
 XACMLAuthzDecisionQuery
XADS =
 XACMLAuthzDecisionStatement

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

19

Outline

• Motivation
• XACML Overview
• How Does It Work?
• What's Special About XACML?
• Comparison to Other Languages
• Further Information

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

20

Comparison to Other Languages

• W3C's Platform for Privacy Preferences (P3P)
> User-level, not enforcement level
> No way to enforce the policies

• ISO/IEC 21000-5: ISO-REL
> Designed for Digital Rights Management (media)
> Not designed for enterprise-wide policies

• IBM's Enterprise Privacy Authorization Language
(EPAL)
> Proprietary; not in any standards organization
> Largely a subset of XACML

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

21

Outline

• Motivation
• XACML Overview
• How Does It Work?
• What's Special About XACML?
• Comparison to Other Languages
• Further Information

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

22

Further Information

• OASIS XACML Technical Committee Home Page
> http://www.oasis-open.org/committees/xacml

• XACML bibliography and list of deployments
> http://docs.oasis-open.org/xacml/xacmlRefs.html

• Sun's XACML Open Source Implementation
> http://sunxacml.sourceforge.net/

• More
> http://research.sun.com/projects/xacml

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

23

Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle,
Santa Clara, California 95054, U.S.A. All rights reserved.

Sun, Sun Microsystems, the Sun logo, and Java are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States
and in other countries.

Anne Anderson
Anne.Anderson@sun.com

OASIS eXtensible Access
Control Markup Language

(XACML)

Page 1

OASIS eXtensible Access
Control Markup Language

(XACML)
XML Community of Practice, 21 June 2006

Anne Anderson
Senior Staff Engineer
Sun Microsystems Laboratories

Page 2

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

2

Outline

• Motivation
• XACML Overview
• How Does It Work?
• What's Special About XACML?
• Comparison to Other Languages
• Further Information

Page 3

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

3

Motivation for XACML

• Data more accessible today
• Regulatory requirements
• Protection at the enforcement level
• Protection of XML documents
• Standard language

> Interoperability
> Common policies, tools, analysis
> Auditability

Why is the eXtensible Access Control Markup Language important?

- Data is more easily accessible today, by more people, so control of access is much
more important than in the past.

- Partly due to this, there are increasing regulatory requirements for the protection of
data.

- In order to meet these requirements, a language for expressing access policies at the
enforcement level is needed. A user-level privacy policy may say “personal information
must be accessed only by authorized personnel”, but at the enforcement level, it is
necessary to define exactly which resources are “personal information” and exactly who
is an “authorized person.”, We need to control access by roles, by time of day, by
document classification level, by subject's age, purpose of access, type of access, etc.
Access Control Lists (ACLs) are inadequate for use with policy variables that go beyond
local subject id, group id, resource id, and fixed set of actions.

- As more and more documents are written using XML, the language needs to support
different protections on different parts of an XML document. For example, in a patient's
medical record, the hospital accounting dept. staff should see the patient's account
balance, but not the patient's diagnosis.

- Why not let vendors duke it out to produce good solutions for these problems?

o Policies need to be supported on multiple platforms. You don't want to have to rewrite
each policy for every application that gives access to a resource: you want one policy
that can be used by Java™ applications, web portal applications, the database system,
the file system, etc. Right now, such a policy must usually be rewritten for each type of
platform because there is no standard.

o With a standard language, a community of practice (!) develops around its use. This
community can share best practices, policy templates, policy authoring and analysis
tools, implementations, etc.

o Finally, with regulatory requirements comes a need to audit policies and accesses.
With multiple languages in use, this task becomes a nightmare!

Page 4

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

4

Outline

• Motivation
• XACML Overview
• How Does It Work?
• What's Special About XACML?
• Comparison to Other Languages
• Further Information

Page 5

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

5

XACML Overview

• XML-based
• Schemas for

> Policies
> Access decision requests
> Access decisions

• Rich set of functions and datatypes for expressing
policies

• Specification: how to evaluate policies against
access decision requests

Page 6

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

6

XACML Overview: standardization

• OASIS Standard
• XACML 1.0 approved Feb. 2003
• XACML 2.0 approved Feb. 2005, including Profiles:

> Privacy
> Role Based Access Control
> OASIS Security Assertions Markup Language (SAML)
> ...

• XACML 3.0 in progress
> Policy-controlled policy administration

Page 7

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

7

XACML Overview: adoption

• Used by more than 35 companies and architectures
> Sun, BEA, IBM, Globus, Layer 7, Entrust, ...
> ASTM Privilege Management Architecture (VHA)
> Net-centric Enterprise Services Architecture (DISA)
> Defense Readiness Reporting System (DoD)
> Enterprise Dynamic Access Control (U.S. Navy)

• Publicly available implementations and tools,
including unencumbered open source

• Over 135 published papers and articles so far

XACML is currently used by more than 35 companies and architectures, and the list is
growing steadily. As one example, XACML is already used in three Sun Microsystems
products, and Sun's Access Manager product is migrating to XACML as part of
becoming open source. Many other major companies are currently using XACML in
products. In addition, a number of architectures, including the government
architectures shown here, specify use of XACML.

It is impossible to provide a complete count of the organizations that use XACML. Most
enterprises do not want to advertise their internal access control mechanisms, so do not
make public the fact that they are using XACML. We know of some of these, and we
suspect there are more.

There are several publicly available implementations of XACML, and some publicly
available tools. Some of these are unencumbered open source. There have been more
than 135 articles and research papers published on XACML so far.

[A URL to the public list is included on the last slide]

Page 8

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

8

Outline

• Motivation
• XACML Overview
• How Does It Work?
• What's Special About XACML?
• Comparison to Other Languages
• Further Information

Page 9

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

9

How Does It Work: Data Flow

Policy
Enforcement
Point (PEP)

Policy
Decision

Point (PDP)

Context
Handler

Requester

Resource

access request

decision request decision &
obligations

resource
content

database

registry

Attribute
Authority additional

attributes

Policy
Administration

Point (PAP)

policies

request notification

attribute queries

attributes

XACML Data
Flow Diagram

decision & obligations

XACML is built around the logical separation of (usually) application-specific “Policy
Enforcement Points”, or “PEP”, from a “Policy Decision Point”, or “PDP”. This has
been a standard part of access control since ITU-T Recommendation X.812 (1995) |
ISO/IEC 10181-3:1996, Information technology - Open Systems Interconnection - Security
frameworks for open systems: Access control framework (where they were called “Access
Enforcement Function”, or “AEF”, and “Access Decision Function” or “ADF”).

A Policy Enforcement Point, or “monitor” is responsible for intercepting all attempts to
access a resource. Since resource access is application specific, the PEP is also
application-specific. The PEP collects information about the access request – who is
making it, what resource is being accessed, what action is to be taken, etc. - and sends
a “decision request” to a “Policy Decision Point”. In XACML, the PDP is divided into two
logical components. The “Context Handler” is implementation-specific. It knows how
to retrieve the policy variables (“Attributes”) used in that deployment. The PDP proper
is completely standard – it evaluates policies against the information in the decision
request, asking the Context Handler for additional Attributes as needed, and renders a
decision of “Permit”, “Deny”, “Not Applicable”, or “Indeterminate”. “Not Applicable”
means that no policy used by this PDP applied to the access request. “Indeterminate”
means some error occurred that prevents the PDP from knowing what the correct
response should be. Policies can contain “Obligations”, or actions that must be
performed as part of handling an access request, such as “Permit this access, but log it
in the security log”, or “Deny this access and notify the system administrator”.

XACML specifies the XML format for policies and exactly how a PDP evaluates them. It
specifies an abstract format for decision requests and decisions, which can optionally
be (and often are) used as concrete request and response formats. XACML does not
specify how the Context Handler obtains Attributes or authenticates them. It also does
not specify how policies are written, stored, retrieved, or authenticated. Profiles help.

Page 10

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

10

How Does It Work: Language Model

PolicySet

Policy

Rule

ConditionEffect

Rule
Combining
Algorithm

Policy
Combining
Algorithm

Target

Subject

Resource

Action

Environment

Obligation

*

1

1 1

1

1

1 1

1

*

1

*

1

1

1

1

1 1 1 1

*

*

*

*

1

1

1 1

1
1

*
1

*

XACML Policy
Language

Model

This is the XACML language model. Starting at the center, a “Policy” is made up of
“Rules”. Policies can be grouped into “PolicySets”, which can also contain other
“PolicySets”, creating a hierarchy. A top-level PolicySet can be viewed as a “tree” of
descendant PolicySets, Policies, and Rules. From here on, when I say “Policy”, I mean
“PolicySet” or “Policy”.

Each Policy and Rule has a “Target”. The Target is a simple predicate that specifies
which Subjects, Resources, Actions, and Environments the Policy or Rule applies to.
For example, a Target may specify that the Policy or Rule applies to every subject
whose X.509 Distinguished Name contains “O=Sun Microsystems, C=US”.

An XACML PDP starts evaluating a decision request with a top-level Policy. It first
evaluates that Policy's Target. If the Target is “false” the Policy is “Not Applicable”, and
no further evaluation is done of either that Policy or of its descendants. If the Target is
“true”, then the PDP evaluates the Policies or Rules at the next lower level, starting with
their Targets. Again, if a Policy or Rule's Target is “false”, then that particular Policy or
Rule is not evaluated further.

At the bottom level, if the Target of a Rule is “true”, then the Rule's “Condition” is
evaluated. A “Condition” is an arbitrary Boolean combination of predicates. XACML
supplies a rich collection of functions, including arithmetic, to use in forming
predicates. Each “Rule” has an “Effect”, which is either “Permit” or “Deny”. If the
Condition is “True”, then the Rule's “Effect” is returned. If the Condition is False, then
“Not Applicable” is returned.

Each Policy specifies a “Combining Algorithm” that says what to do with the results
from the Policies and Rules it contains. One such algorithm is “Deny Overrides”; in this
case, if any child Policy or Rule evaluates to “Deny”, then the Policy evaluates to
“Deny”. Another is “Permit Overrides”; in this case, if any child Policy or Rule evaluates
to “Permit”, then the Policy evaluates to “Permit”.

Policies can have “Obligations” associated with them. The “Combining Algorithms”
also tell how to combine the Obligations from different Policies.

Page 11

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

11

How Does It Work: Example Policy

“In order to access a
patient record, you must
be at least 21 years old.”

Page 12

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

12

How Does It Work: Example Policy
<Policy PolicyId="policy:1" RuleCombiningAlgorithm="deny-overrides”>
 <Target/>
 <Rule RuleId="rule:1" Effect="Deny">
 <Target> <Resources> <Resource>
 <ResourceMatch MatchId="anyURI-equal">
 <ResourceAttributeDesignator
 AttributeId="resource:TargetNamespace" DataType="anyURI"/>
 <AttributeValue
 DataType="anyURI">schemas:PatientRecord</AttributeValue>
 </ResourceMatch>
 </Resource> </Resources> </Target>
 <Condition>
 <Apply FunctionId="integer-less-than">
 <Apply FunctionId="integer-one-and-only">
 <SubjectAttributeDesignator AttributeId="age" DataType="integer"/>
 </Apply>
 <AttributeValue DataType="integer">21</AttributeValue>
 </Apply>
 </Condition>
 </Rule>
</Policy>

Rule Effect

Rule Target

Rule Condition

Empty Policy Target

This is the corresponding XACML policy, with abbreviated URIs and without XML
namespace attributes. I won't try to explain it in detail, but here are the essential
elements.

- The Target of this particular Policy is empty, meaning the Policy applies to all
requests.

- The Policy contains one Rule, whose Effect is “Deny”. The Target of the Rule says that
the Rule applies to any access where the target namespace of the Resource being
accessed is the PatientRecord schema. If this Target is “true”, then the Condition is
tested.

- The Rule will evaluate to Deny IF the resource being accessed is a PatientRecord
instance AND if the person's age is less than 21.

- The RuleCombiningAlgorithm is “deny-overrides”, so, if the Rule does evaluate to
“Deny”, then the Policy will return “Deny”.

This example shows only a very small subset of XACML's capabilities, butI hope it gives
you a sense of how the language works.

There is a large set of standard functions to use in specifying Conditions, and a large set
of standard datatypes. The identities of Attributes are application-dependent – XACML
doesn't care what they mean, only what their identifier is and what their DataType is.

Page 13

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

13

Outline

• Motivation
• XACML Overview
• How Does It Work?
• What's Special About XACML?
• Comparison to Other Languages
• Further Information

Next I want to describe a few of the special features of XACML.

Page 14

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

14

What Is Special About XACML?

• Domain-independent
• Protection of XML documents
• Distributed policies
• Optimized indexing of policies
• Rich set of standard functions and datatypes
• Profiles (see next slides)
• Policy administration and delegation coming

What do I mean when I say XACML is “domain-independent”? It means each enterprise,
organization, application, etc. that wants to use XACML decides on the set of policy
variables it wants to use and what they mean. It is up to the domain to define identifiers
and datatypes for these variables, and then to construct the policies in terms of these
variables. XACML will work with any set of variables. This allows XACML to refer to
resources, subjects, and actions using the terms and descriptors in use in the enterprise
itself.

-XACML has special support for protection of XML documents. An Attribute can be an
XPath expression instead of a named variable. In this case, the value of the Attribute is
the value of the node (or nodes) selected by the XPath expression. This allows you to
create various useful types of conditions. For example, you can let a Subject access a
Patient Record if the Subject's name matches the “PatientName” field in the record. You
can also give Subjects who are in the “Accounting Dept” access only to the “Patient
Account” portion of a Patient Record and Subjects who are “Medical Personnel” access
only to the “Medical History” portion of the record. And so on.

-XACML supports distributed policy management. For example, a PolicySet can include
other policies by reference, instead of physically incorporating them. This allows a
PolicySet to apply policies from the Legal Dept., the Finance Dept., and the Human
Resources Dept., to each request, for example, without having to maintain them
separately. XACML's “ combining algorithms” also help with handling distributed
policies.

-XACML's Targets are designed to allow efficient indexing of policies.

-XACML includes a rich set of arithmetic functions, comparison functions, string
manipulation functions, regular expression functions, etc., as well as a large set of
common data types. Implementations can extend these further if necessary.

-XACML has been profiled for several specific types of use cases. I'll talk about three of
these profiles on the next few slides.

-XACML 3.0 will be adding the ability to specify policies that control who can create
other policies. This supports both policy administration and delegation.

Page 15

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

15

XACML Profiles: Privacy

• Standard XACML 2.0 +
• “Purpose” Attributes

> Purpose for collecting information
> Purpose for accessing information

XACML was designed from the start to support privacy protection. At the enforcement
level, privacy protection must be integrated with access control because otherwise the
two types of policies can conflict with each other – you can't have a privacy policy that
says a Patient must always be allowed to see the Patient's own Medical Record if the
access control policy says only employees of the hospital are allowed to see Medical
Records.

One addition to XACML was needed to better support privacy policies. Privacy policies,
unlike most traditional access control policies, often require that the purpose for which
information is access must match the purpose for which the information was gathered.
The XACML Privacy Profile defines standard attributes for describing the purposes for
which information was gathered and the purposes for which information is being
accessed. Policies can require that these two values match. The XACML Privacy Profile
describes how to use these attributes.

Page 16

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

16

XACML Profiles:
Role Based Access Control

Accessor

Policy
Enforcement

Point

Sensitive
Document

Policy
Decision

Point

Healthcare
Supervisor

Policy

Physician

 Policy

Registered
Nurse

Policy

Nursing
Aide

Policy

Another important XACML profile is for “Role Based Access Control”. This is where you
want to organize the permissions in your organization around functional roles. In this
diagram, a health care organization has four roles: Healthcare Supervisor, Physician,
Registered Nurse, and Nursing Aide. There is a policy associated with each role that
determines what a person associated with that role can do. XACML supports this
organization of permissions around roles.

Some organizations structure their roles as a hierarchy. In this example, a “Healthcare
Supervisor” should have all the permissions of either a Physician or a Registered Nurse,
and a Registered Nurse should have all the permissions of a Nursing Aide. XACML
supports this hierarchical organization of roles also.

Page 17

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

17

XACML Profiles:
Role Based Access Control

• ANSI/INCITS 359:2004:Information Technology –
Role Based Access Control (RBAC)

• Developed with ANSI Standard developers

XACML's Role Based Access Control model is based on the ANSI/INCITS 359 Standard
for Role Based Access Control approved in 2004. XACML's support for Role Based
Access Control was developed in conjunction with the developers of the ANSI standard.

Page 18

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

18

XACML Profiles: OASIS Security
Assertion Markup Language (SAML)

PEP

XACML
PDP

AAAA
Attribute
Authority

PAPA
Policy
Admin
Point

Attribute
Repository

Policy
Repository

Request:AttributeQuery

Response:AttributeStatement

Response:
AttributeStatement

Assertion:
XACMLPolicyStatement

Response:
XACMLPolicyStatement

Request:
XACMLPolicyQuery

Request:XADQ

Response:XADS Request:
AttributeQuery

Assertion:
AttributeStatement

Assertion:
XACMLPolicyStatement

Assertion:
AttributeStatement

Assertion:
AttributeStatement

XADQ =
 XACMLAuthzDecisionQuery
XADS =
 XACMLAuthzDecisionStatement

Another XACML profile supports use of the OASIS Standard Security Assertion Markup
Language, or “SAML”, to implement communication between the various entities in the
XACML model. The profile allows SAML to be used to request authorization decisions,
policies, and attributes, and to protect these communications using digital signatures.
XACML's profile was developed with help from the SAML developers.

Page 19

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

19

Outline

• Motivation
• XACML Overview
• How Does It Work?
• What's Special About XACML?
• Comparison to Other Languages
• Further Information

Next I will talk a little about three other languages related to access control and privacy.

Page 20

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

20

Comparison to Other Languages

• W3C's Platform for Privacy Preferences (P3P)
> User-level, not enforcement level
> No way to enforce the policies

• ISO/IEC 21000-5: ISO-REL
> Designed for Digital Rights Management (media)
> Not designed for enterprise-wide policies

• IBM's Enterprise Privacy Authorization Language
(EPAL)
> Proprietary; not in any standards organization
> Largely a subset of XACML

- W3C's Platform for Privacy Preferences or “P3P” is a W3C Recommendation; a new
version is in last call now. P3P deals only with user-level policies, and only in generic
terms. It is not designed to specify how these policies apply to particular resources in
the enterprise. It is not linked to policy enforcement mechanisms.

- ISO/IEC 21000-5:ISO-REL (or MPEG-REL) was standardized for use with MPEG-
encoded media. It is based on the eXtensible Rights Markup Language (XrML) from
ContentGuard, and a license is required to use it – it is not royalty-free. ISO-REL is not
designed for access control or privacy, but for “digital rights management”. It is not
designed for the expression of enterprise-wide policies, but for domain-specific rights
associated with particular media copies.

- IBM's Enterprise Privacy Authorization Language is not a standard, and is not being
worked on in any standards organization. It is a proprietary IBM language. In
functionality, it is largely a subset of XACML (see comparison at
http://research.sun.com/projects/xacml). EPAL is not suitable for enterprise-wide
policies; it quickly becomes unmanageable as more rules are added. It was also not
designed as a general-purpose access control language. This means that an enterprise
would have to write its access control policies using a different language, and these two
sets of policies could conflict.

Page 21

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

21

Outline

• Motivation
• XACML Overview
• How Does It Work?
• What's Special About XACML?
• Comparison to Other Languages
• Further Information

Page 22

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

22

Further Information

• OASIS XACML Technical Committee Home Page
> http://www.oasis-open.org/committees/xacml

• XACML bibliography and list of deployments
> http://docs.oasis-open.org/xacml/xacmlRefs.html

• Sun's XACML Open Source Implementation
> http://sunxacml.sourceforge.net/

• More
> http://research.sun.com/projects/xacml

The OASIS XACML Technical Committee's Home Page has links to all the schemas and
specifications, including all the profiles. It also contains links to all known publicly
available implementations of XACML (4 so far), as well as lots of other information.

The XACML bibliography contains a list of all papers and articles published about
XACML, and a list of all known products and architectures that use it. It is updated
every few months.

Sun's XACML Open Source Implementation is unencumbered; it is available under a
royalty-free, non-viral BSD license. This supports XACML 1.0 and 1.1 completely, and
supports almost all of XACML 2.0.

There is more information related to XACML at the research.sun.com page shown.

This concludes my presentation.

Page 23

Copyright © 2006 Sun Microsystems, Inc. All rights reserved.

23

Copyright 2006 Sun Microsystems, Inc., 4150 Network Circle,
Santa Clara, California 95054, U.S.A. All rights reserved.

Sun, Sun Microsystems, the Sun logo, and Java are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States
and in other countries.

Page 24

Anne Anderson
Anne.Anderson@sun.com

OASIS eXtensible Access
Control Markup Language

(XACML)

